The Identification of Cable Bacteria Attached to the Anode of a Benthic Microbial Fuel Cell: Evidence of Long Distance Extracellular Electron Transport to Electrodes
نویسندگان
چکیده
Multicellular, filamentous, sulfur-oxidizing bacteria, known as cable bacteria, were discovered attached to fibers of a carbon brush electrode serving as an anode of a benthic microbial fuel cell (BMFC). The BMFC had been operated in a temperate estuarine environment for over a year before collecting anode samples for scanning electron microscopy and phylogenetic analyses. Individual filaments were attached by single terminus cells with networks of pilus-like nano-filaments radiating out from these cells, across the anode fiber surface, and between adjacent attachment locations. Current harvesting by the BMFC poised the anode at potentials of ~170-250 mV vs. SHE, and these surface potentials appear to have allowed the cable bacteria to use the anode as an electron acceptor in a completely anaerobic environment. A combination of catalyzed reporter deposition fluorescent in situ hybridization (CARD-FISH) and 16S rRNA gene sequence analysis confirmed the phylogeny of the cable bacteria and showed that filaments often occurred in bundles and in close association with members of the genera Desulfuromonas. However, the Desulfobulbaceae Operational Taxonomic Units (OTUs) from the 16S sequencing did not cluster closely with other putative cable bacteria sequences suggesting that the taxonomic delineation of cable bacteria is far from complete.
منابع مشابه
Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell
Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa</em...
متن کاملSulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell
The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...
متن کاملThree-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017